Metode Naïve Bayes Untuk Prediksi Waktu Produksi Mebel di UD. Wali Barokah Kartasura Sukoharjo Jawa Tengah

Authors

  • RM Abdul Dhohir Surya Kusuma STMIK Sinar Nusantara Author
  • Dwi Remawati STMIK Sinar Nusantara Author
  • Kumaratih Sandradewi STMIK Sinar Nusantara Author

Abstract

Wali Barokah is one of the industrial furniture craftsmen (furniture) with the main material using teak wood. The development of the times has made many furniture entrepreneurs appear, making the competition between furniture craftsmen increasingly tight. One way for customers not to be disappointed is that business voters must serve customers according to the specified time when transacting. The attributes that will be used in classifying the production time are the name of the item, the number of orders, the difficulty, the equipment, the number of workers. The method that will be used is the the method Naïve Bayes Classifier. Based on the results of the confusion matrix test on the nave Bayes method of the dataset that has been taken on the object of research, an accuracy rate of 80% is obtained or is included in the category Good. Meanwhile, Precision is 83% and Recall is 88%.

Downloads

Download data is not yet available.

References

Audilla, D., Fauziah, F. and Hidayatullah, D. (2019) ‘Sistem Pendukung Keputusan Penilaian Efektivitas Sistem Informasi Menggunakan Metode Naïve Bayes Classifier’, STRING (Satuan Tulisan Riset dan Inovasi Teknologi), 4(2), p. 150. doi: 10.30998/string.v4i2.3808.

Dwi Septiana, A. et al. (2023) ‘Diagnosa Penyakit Antraks Dengan Metode Naive Bayes (Studi Kasus: Kambing Jawarandu) Program Studi Informatika , STMIK Sinar Nusantara Surakarta 2,3)’, Jurnal TIKomSiN, 11(2), pp. 53–58. Available at: https://doi.org/10.30646/tikomsin.v11i2.787.

Heliyanti Susana (2022) ‘Penerapan Model Klasifikasi Metode Naive Bayes Terhadap Penggunaan Akses Internet’, Jurnal Riset Sistem Informasi dan Teknologi Informasi (JURSISTEKNI), 4(1), pp. 1–8. doi: 10.52005/jursistekni.v4i1.96.

Maulina, Y., Gunaryati, A. and Aldisa, R. T. (2023) ‘Sistem Pakar Diagnosis Awal Penyakit Anemia Menggunakan Metode Naïve Bayes dan Certainty Factor’, STRING (Satuan Tulisan Riset dan Inovasi Teknologi), 8(1), p. 110. doi: 10.30998/string.v8i1.16468.

Nurainun, N. et al. (2023) ‘Penerapan Algoritma Naïve Bayes Classifier Dalam Klasifikasi Status Gizi Balita dengan Pengujian K-Fold Cross Validation’, Journal of Computer System and Informatics (JoSYC), 4(3), pp. 578–586. doi: 10.47065/josyc.v4i3.3414.

Pebdika, A., Herdiana, R. and Solihudin, D. (2023) ‘Klasifikasi Menggunakan Metode Naive Bayes Untuk Menentukan Calon Penerima Pip’, JATI (Jurnal Mahasiswa Teknik Informatika), 7(1), pp. 452–458. doi: 10.36040/jati.v7i1.6303.

Prabowo, I. A., Remawati, D. and Wardana, A. P. W. (2020) ‘Klasifikasi Tingkat Gangguan Tidur Menggunakan Algoritma Naïve Bayes’, Jurnal Teknologi Informasi dan Komunikasi (TIKomSiN), 8(2). doi: 10.30646/tikomsin.v8i2.519.

Susilo, A. J., Kustanto, K. K. and Remawati, D. (2023) ‘Implementasi Naïve Bayes Dalam Pemilihan Jenis Bahan Pembuatan Meja’, Jurnal Ilmiah SINUS, 21(1), p. 39. doi: 10.30646/sinus.v21i1.674.

Wijaya, H. D. and Dwiasnati, S. (2020) ‘Implementasi Data Mining dengan Algoritma Naïve Bayes pada Penjualan Obat’, Jurnal Informatika, 7(1), pp. 1–7. doi: 10.31311/ji.v7i1.6203.

Yovita, C., Nasution, K. and Haramaini, T. (2023) ‘Penerapan Algoritma Naive Bayes dan Selection Sort pada Penilaian Kuis di Aplikasi Pembelajaran Pemrograman Java dan PHP’, Hello World Jurnal Ilmu Komputer, 2(3), pp. 120–128. doi: 10.56211/helloworld.v2i3.278.

Downloads

Published

01-08-2024